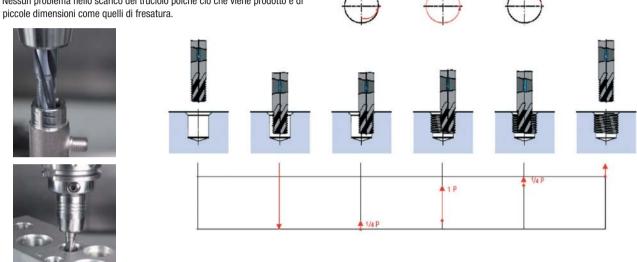


La fresatura di filetti


Grazie all'impiego massiccio della tecnologia a controllo numerico, abbinata alle macchine utensili a tre assi, si sono create le premesse per un moderno procedimento per la produzione di filetti.

La fresatura di filetti può essere impiegata senza problemi e con un'elevata sicurezza di processo quando il programma dispone di un movimento di interpolazione elicoidale e di un serraggio stabile dell'utensile e del pezzo. La fresatura di filetti, è un'alternativa valida alle classiche lavorazioni da taglio o di rullatura di filetti, offrendo i seguenti vantaggi:

- Possibilità quasi illimitata di produzione di filetti indipendentemente dalla misura e dalla tolleranza;
- Un solo utensile per filettatura destra e sinistra;
- Un solo utensile per foro cieco e passante;
- Nessun problema nello scarico del truciolo poiché ciò che viene prodotto è di

Affinché il filetto possa essere prodotto correttamente, senza creare errori di profilo, occorre rispettare un rapporto tra diametro fresa e diametro foro di 2/3 per il passo grosso e di 3/4 per il passo fine, es. per eseguire un filetto da M16 la fresa avrà un diametro non superiore a 10 mm, mentre, per eseguire un M16x1,5 la fresa avrà un diametro non superiore a 12 mm.

Questo dipende dal fatto che la fresa si inserisce nel materiale con un attacco ad arco di cerchio che, se eseguito scorrettamente, a causa della mancanza di spazio, porta la fresa a tallonare nel preforo. Per capire come si sviluppa un ciclo completo per eseguire un filetto con una fresa a filettare possiamo osservare lo schema qui rappresentato.

ISO	Gruppo di materiale	Resistenza (N/mm²)	Durezza HB	Vc (m/min)	Avanzamento per dente Fb (mm)						
					ø 5	ø6	ø 8	ø 10	ø 12	ø 14	ø 16
P	Acciai da costruzione	≤ 850		110	0,03	0,035	0,05	0,06	0,06	0,065	0,065
	Acciai automatici	≤ 1000		110	0,03	0,035	0,05	0,06	0,06	0,065	0,065
	Acciai da cementazione non legati	≤ 750									
	Acciai da bonifica non legati	≤ 850									
	Acciai da cementazione legati	≥ 850 - 1200		90	0,025	0,03	0,04	0,05	0,05	0,05	0,055
	Acciai da bonifica legati	≥ 850 - 1200									
	Acciai da utensili	≤ 1000									
M	Acciaio inox resistente agli acidi	≥ 650 - 1000		60	0,02	0,025	0,03	0,04	0,045	0,05	0,05
	Acciaio inox sulfureo	≤ 850									
	Acciaio inox austenitico	≤ 850									
	Acciaio inox martensitico	≤ 850									
K	Ghisa grigia	-	≤ 240	120	0,03	0,035	0,05	0,06	0,06	0,065	0,07
	Ghisa sferoidale e ghisa malleabile	-	≤ 240								
N	Alluminio e sue leghe	≤ 400		250	0,045	0,05	0,06	0,07	0,08	0,085	0,09
	Materiali non ferrosi	≤ 600		250	0,045	0,05	0,06	0,07	0,08	0,085	0,09
	Materiali non ferrosi e leghe di rame	≤ 600									
	Materiali plastici	-		350	0,05	0,055	0,06	0,075	0,085	0,09	0,1
S	Leghe speciali e di titanio	≤ 1200		35	0,02	0,025	0,03	0,04	0,045	0,05	0,05
Н	Acciai temperati (45 - 65 HRC)	-		25	0,01	0,012	0,018	0,02	0,022	0,025	0,03

Per acciai temperati fino a 55 HRC il diametro deve essere programmato in 3 passaggi.